Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3- transport
نویسندگان
چکیده
We have used pH-, Na-, and Cl-sensitive microelectrodes to study basolateral HCO3- transport in isolated, perfused proximal tubules of the tiger salamander Ambystoma tigrinum. In one series of experiments, we lowered basolateral pH (pHb) from 7.5 to 6.8 by reducing [HCO3-]b from 10 to 2 mM at a constant pCO2. This reduction of pHb and [HCO3-]b causes a large (approximately 0.35), rapid fall in pHi as well as a transient depolarization of the basolateral membrane. Returning pHb and [HCO3-]b to normal has the opposite effects. Similar reductions of luminal pH (pHl) and [HCO3-]l have only minor effects. The reduction of [HCO3-]b and pHb also produces a reversible fall in aiNa. In a second series of experiments, we reduced [Na+]b at constant [HCO3-]b and pHb, and also observed a rapid fall in pHi and a transient basolateral depolarization. These changes are reversed by returning [Na+]b to normal. The effects of altering [Na+]l in the presence of HCO3-, or of altering [Na+]b in the nominal absence of HCO3-, are substantially less. Although the effects on pHi and basolateral membrane potential of altering either [HCO3-]b or [Na+]b are largely blocked by 4-acetamido-4-isothiocyanostilbene-2,2'-disulfonate (SITS), they are not affected by removal of Cl-, nor are there accompanying changes in aiCl consistent with a tight linkage between Cl- fluxes and those of Na+ and HCO3-. The aforementioned changes are apparently mediated by a single transport system, not involving Cl-. We conclude that HCO3- transport is restricted to the basolateral membrane, and that HCO3- fluxes are linked to those of Na+. The data are compatible with an electrogenic Na/HCO3 transporter that carries Na+, HCO3-, and net negative charge in the same direction.
منابع مشابه
Intracellular pH regulation in the renal proximal tubule of the salamander. Na-H exchange
Using pH-sensitive microelectrodes to measure intracellular pH (pHi) in isolated, perfused proximal tubules of the tiger salamander Ambystoma tigrinum, we have found that when cells are acid-loaded by pretreatment with NH+4 in a nominally HCO3--free Ringer, pHi spontaneously recovers with an exponential time course. This pHi recovery, which is indicative of active (i.e., uphill) transport, is b...
متن کاملAcid-base transport by the renal proximal tubule.
One of the major tasks of the renal proximal tubule is to secrete acid into the tubule lumen, thereby reabsorbing approximately 80% of the filtered HCO3- as well as generating new HCO3- for regulating blood pH. This review summarizes the cellular and molecular events that underlie four major processes in HCO3- reabsorption. The first is CO2 entry across the apical membrane, which in large part ...
متن کاملA discussion of Ambystoma kidney tubule ion channels, transporters, and pH regulation.
This paper explores the role and biophysical expression of the equivalent electrical circuit model as it applies to ionic conductances across the paracellular shunt, apical membrane, and basolateral membrane of the Ambystoma renal proximal tubule. Information about such conductances may be experimentally determined through transepithelial voltage and intracellular voltage measurements. The equi...
متن کاملEffect of isolated removal of either basolateral HCO-3 or basolateral CO2 on HCO-3 reabsorption by rabbit S2 proximal tubule.
The equilibrium CO2+H2O right arrow over left arrow H++HCO3- had made it impossible to determine how isolated changes in basolateral CO2 ([CO2]) or HCO3- concentration ([HCO3-]), at a fixed basolateral pH, modulate renal HCO3- or reabsorption. In the present study, we have begun to address this issue by measuring HCO3- reabsorption (JHCO3) and intracellular pH (pHi) in isolated perfused rabbit ...
متن کاملCell pH in the rat proximal convoluted tubule. Regulation by luminal and peritubular pH and sodium concentration.
To examine the relative roles of apical and basolateral membrane transport mechanisms in the regulation of cell pH in the proximal convoluted tubule, cell pH was measured in the in vivo microperfused rat tubule using fluorescence. Decreasing luminal pH by 0.7 pH units caused cell pH to decrease by 0.08 pH units, whereas a similar decrease in peritubular pH caused cell pH to decrease by 0.32 pH ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 81 شماره
صفحات -
تاریخ انتشار 1983